Item No-

Rayat Shikshan Sanstha's KARMAVEER BHAURAO PATIL COLLEGE, VASHI. NAVI MUMBAI (AUTONOMOUS COLLEGE)

Sector-15- A, Vashi, Navi Mumbai - 400 703

Syllabus for M.Sc. Information Technology -Part II

Program: M.Sc. Information Technology

Course: M.Sc. Information Technology

(Choice Based Credit, Grading and Semester System with effect from the academic year 2021-2022)

AC	 	
Item No.		

Rayat Shikshan Sanstha's

KARMAVEER BHAURAO PATIL COLLEGE, VASHI, NAVI MUMBAI

Syllabus for Approval

Sr.No.	Heading	Particulars
1	Title of the Course	M.Sc Information Technology
2	Eligibility for Admission	Degree with 12 th Mathematics
3	Passing marks	40%
4	Ordinances/ Regulations(if any)	
5	No.of Uears/Semester	04 Semester/02 Years
6	Level	P.G
7	Pattern	Semester
8	Status	New
9	To be implemented from Academic Year	2021-2022

Date:		Signature:
	-	

Name of BOS Chairperson /	Dean:

Preamble of the Syllabus:

The subject of Information Technology is one of the important application tool which can be applied to different areas in teaching, training and learning which is considered to be important in terms of human resource development, Information Processing and Decision Making which enhances the development of a Nation.

Information Technology as an application science is studied to be applied for other areas, right from Mathematics to other basic sciences, applied sciences, social sciences and each and every aspect of human life.

The main aim of the course is to focus on the technological tools and concepts available and how they can be applied to the developmental processes

The various concepts include Embedded System, Information Security Management, Virtualization, Ethical Hacking, Artificial Intelligence, IT Infrastructure Management, Computer Forensics, Cloud Management, Project and so on..

Information Technology Experts are very much required right from academic institutions, Research and Development to Industries both Public and Private Sectors. The two year programme of M.Sc. (Information Technology) is prescribed according to the credit system of University of Mumbai from the academic year 2018-19. The course has been divided in to four semesters. The programme has a total 16 theory papers, and four in each semester.

The programme is designed to provide students a focused elaborate training in Information Technology concepts and tools as well as exposing them to the advanced fields. In addition to theoretical knowledge, significant emphasis has been given to provide hands on experience to the students in the frontier areas of Information Technology. A multidisciplinary approach has been employed to provide best leverage to students to enable.

Syllabus for M.Sc. Part-2 Information Technology

Objectives of the Course:

A few years after graduation, students with a M.Sc in Information Technology will be able to::

- Prepare highly qualified specialists for the Saudi industry in the field of information technology.
- Develop interpersonal skills, teamwork skills, leadership skills, and project management skills.
- Learn how to operate a professional IT practice
- Study a broad context of advanced contemporary IT issues

Course Outcome:

By the end of the course, a student should develop the ability:

Upon graduation, students with a M.Sc in Information Technology will be able to:

- Students will develop ability to use IT skills in decision making, by analyzing problems, developing solutions and explaining findings.
- Students can recognize ethical and professional responsibilities in IT.
- Students can design an IT solution using best practices and standard methodologies in the field.
- Student can easily implement, and test an IT solution, and evaluate its effectiveness.
- Student can use and apply current technical concepts and practices in the core information technologies of networking, data management, software engineering, computer security.
- Student can demonstrate a deep understanding of the IT methodologies and frameworks used to solve complex computing problems related to at least one IT Body-of-Knowledge
- Student will build the ability to identify and analyze user needs and take them into account in the selection, creation, evaluation and administration of computer-based systems.
- Student can effectively integrate IT-based solutions into the user environment.
- Student will developed and implement optimal solutions to complex computing problems using industry-recognized best practices and standards.
- Student can apply ethical decision making in the development, implementation, and management of IT systems.

Semester – III					
Course Code	Credits				
PGIT301	Technical Writing and Entrepreneurship Development	4			
PGIT302	Applied Artificial Intelligence	4			
PGIT303	Machine Learning	4			
PGIT304	Robotic Process Automation	4			
PGIT3P1	Project Documentation and Viva	2			
PGIT3P2	Applied Artificial Intelligence Practical	2			
PGIT3P3	Machine Learning Practical	2			
PGIT3P4	Robotic Process Automation Practical	2			
	Total Credits	24			

	Semester – IV					
Course Code	Course Code Course Title					
PGIT401	Blockchain	4				
PGIT402	Natural Language Processing	4				
PGIT403	Deep Learning	4				
PGIT404	Human Computer Interaction	4				
PGIT4P1		2				
PGIT4P2	Natural Language Processing Practical	2				
PGIT4P3	Deep Learning Practical	2				
PGIT4P4	PGIT4P4 Project Implementation and Viva					
	Total Credits	24				

SEMESTER III

M. Sc (Informa	Semester – III		
Course Name: Technology Development	Course Code: PGIT301		
Periods per week (1	4		
Credits	4		
			Marks
Evaluation System	Evaluation System Theory Examination		60
	Internal		40

- This course aims to provide conceptual understanding of developing strong foundation in general writing, including research proposal and reports.
- It covers the technological developing skills for writing Article, Blog, E-Book, Commercial web Page design, Business Listing Press Release, E-Listing and Product Description.
- This course aims to provide conceptual understanding of innovation and entrepreneurship development.

Unit	Details	Lectures	Outcome
I	Introduction to Technical Communication: What Is Technical Communication? The Challenges of Producing Technical Communication, Characteristics of a Technical Document, Measures of Excellence in Technical Documents, Skills and Qualities Shared by Successful Workplace Communicators, How Communication Skills and Qualities Affect Your Career? Understanding Ethical and Legal Considerations: A Brief Introduction to Ethics, Your Ethical Obligations, Your Legal Obligations, The Role of Corporate Culture in Ethical and Legal Conduct, Understanding Ethical and Legal Issues Related to Social Media, Communicating Ethically Across Cultures, Principles for Ethical Communication Writing Technical Documents: Planning, Drafting, Revising, Editing, Proofreading Writing Collaboratively: Advantages and Disadvantages of Collaboration, Managing Projects, Conducting Meetings, Using Social Media and Other Electronic Tools in Collaboration, Importance of Word Press Website, Gender and Collaboration, Culture and Collaboration.	12	CO1
II	Introduction to Content Writing: Types of Content (Article, Blog, E-Books, Press Release, Newsletters Etc), Exploring Content Publication Channels. Distribution of your content across various channels. Blog Creation:	12	CO2

Understand the psychology behind your web traffic,	

	Constitut Lilling Lond's 11.1 (4) 4 XXX		
	Creating killing landing pages which attract users, Using Landing Page Creators, Setting up Accelerated Mobile		
	Pages, Identifying UI UX Experience of your website or		
	blog. Organizing Your Information: Understanding		
	Three Principles for Organizing Technical Information,		
	Understanding Conventional Organizational Patterns,		
	Emphasizing Important Information: Writing Clear,		
	Informative Titles, Writing Clear, Informative Headings,		
	Writing Clear Informative Lists, Writing Clear		
	Informative Paragraphs.		
	Creating Graphics: The Functions of Graphics, The		
	Characteristics of an Effective Graphic, Understanding		
	the Process of Creating Graphics, Using Color		
	Effectively, Choosing the Appropriate Kind of Graphic,		
	Creating Effective Graphics for Multicultural Readers.		
	Researching Your Subject: Understanding the		
	Differences Between Academic and Workplace Research,		
III	Understanding the Research Process, Conducting	12	CO3
	Secondary Research, Conducting Primary Research,		
	Research and Documentation: Literature Reviews,		
	Interviewing for Information, Documenting Sources,		
	Copyright, Paraphrasing, Questionnaires. Report		
	Components: Abstracts, Introductions, Tables of		
	Contents, Executive Summaries, Feasibility Reports,		
	Investigative Reports, Laboratory Reports, Test Reports,		
	Trip Reports, Trouble Reports		
	Writing Proposals: Understanding the Process of		
	Writing Proposals, The Logistics of Proposals, The		
	—Deliverables of Proposals, Persuasion and		
	Proposals, Writing a Proposal, The Structure of the		
	Proposal. Writing Informational Reports:		
	Understanding the Process of Writing Informational		
	Reports, Writing Directives, Writing Field Reports,		
	Writing Progress and Status Reports, Writing Incident		
	Reports, Writing Meeting Minutes. Writing		
	Recommendation Reports: Understanding the Role of		
	Recommendation Reports, Using a Problem-Solving		
IV	Model for Preparing Recommendation Reports, Writing	12	CO4
	Recommendation Reports. Reviewing, Evaluating, and		
	Testing Documents and Websites: Understanding		
	Reviewing, Evaluating, and Testing, Reviewing Documents and Websites, Conducting Usability		
	, , ,		
	Evaluations, Conducting Usability Tests, Using Internet tools to check writing Quality, Duplicate Content		
	Detector, What is Plagiarism?, How to avoid writing		
	plagiarism content? Innovation management: an		
	introduction: The importance of innovation, Models of		
	innovation, Innovation as a management process.		
	Market adoption		
	THAT NOT AUOPHOI		

	and	technolog	gy diffusi	on: Time lag	g betv	veen	innovation
	and	useable	product,	Innovation	and	the	market,

	Innovation and market vision ,Analysing internet search data to help adoption and forecasting sales ,Innovative new products and consumption patterns, Crowd sourcing for new product ideas, Frugal innovation and ideas from everywhere, Innovation diffusion theories.		
V	Managing innovation within firms: Organisations and innovation, The dilemma of innovation management, Innovation dilemma in low technology sectors, Dynamic capabilities, Managing uncertainty, Managing innovation projects Operations and process innovation: Operations management, The nature of design and innovation in the context of operations, Process design, Process design and innovation Managing intellectual property: Intellectual property, Trade secrets, An introduction to patents, Trademarks, Brand names, Copyright Management of research and development: What is research and development?, R&D management and the industrial context, R&D investment and company success, Classifying R&D, R&D management and its link with business strategy, Strategic pressures on R&D, Which business to support and how?, Allocation of funds to R&D, Level of R&D expenditure Managing R&D projects: Successful technology management, The changing nature of R&D management, The acquisition of external technology, Effective R&D management, The link with the product innovation process, Evaluating R&D projects.	12	CO5

Books a	nd References:				
Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Technical Communication	Mike Markel	Bedford/St. Martin's	11	2014
2.	Innovation Management and New Product Development	Paul Trott	Pearson	06	2017
3.	Handbook of Technical Writing	Gerald J. Alred , Charles T. Brusaw , Walter E. Oliu	Bedford/St. Martin's	09	2008
4.	Technical Writing 101: A Real-World Guide to Planning and Writing Technical Content	Alan S. Pringle and Sarah S. O'Keefe	scriptorium	03	2009
5.	Innovation and Entrepreneurship	Peter Drucker	Harper Business	03	2009

Course Outcomes:

After completion of the course, a student should be able to:

CO1: Develop technical documents that meet the requirements with standard guidelines. Understanding the essentials and hands-on learning about effective Website Development.

CO2: Write Better Quality Content Which Ranks faster at Search Engines. Build effective Social Media Pages.

CO3: Evaluate the essentials parameters of effective Social Media Pages.

CO4: Understand importance of innovation and entrepreneurship.

CO5: Analyze research and development projects.

M. Sc (Information Technology)		Semester – III		
Course Name: Project Document	Course Co	ode: PGIT3P1		
Periods per week (1 Period is 60 minutes)		4		
Credits		2		
		Hours	Marks	
Evaluation System	Practical Examination	nination 2		
	Internal			

The learners are expected to develop a project beyond the undergraduate level. Normal web sites, web applications, mobile apps are not expected. Preferably, the project should be from the elective chosen by the learner at the post graduate level. In semester three. The learner is supposed to prepare the synopsis and documentation. The same project has to be implemented in Semester IV.

More details about the project is given is Appendix 1.

M. Sc (Information Technology)		Semester – III	
Course Name: Applied Art	Course Co	de: PGIT302	
Periods per week (1 Period	is 60 minutes) 4		4
Credits			4
		Hours	Marks
Evaluation System	Theory Examination	2½ 60	
	Internal		40

- To explore the applied branches of artificial intelligence
- To enable the learner to understand applications of artificial intelligence
 To enable the student to solve the problem aligned with derived branches of artificial intelligence.

Unit	Details	Lectures	Outcome
I	Review of AI: History, foundation and Applications Expert System and Applications: Phases in Building Expert System, Expert System Architecture, Expert System versus Traditional Systems, Rule based Expert Systems, Blackboard Systems, Truth Maintenance System, Application of Expert Systems, Shells and Tools	12	CO1
II	Probability Theory: joint probability, conditional probability, Bayes's theorem, probabilities in rules and facts of rule based system, cumulative probabilities, rule based system and Bayesian method Fuzzy Sets and Fuzzy Logic: Fuzzy Sets, Fuzzy set operations, Types of Member ship Functions, Multivalued Logic, Fuzzy Logic, Linguistic variables and Hedges, Fuzzy propositions, inference rules for fuzzy propositions, fuzzy systems, possibility theory and other enhancement to Logic	12	CO2
III	Machine Learning Paradigms: Machine Learning systems, supervised and un-supervised learning, inductive learning, deductive learning, clustering, support vector machines, cased based reasoning and learning. Artificial Neural Networks: Artificial Neural Networks, Single-Layer feedforward networks, multi-layer feed-forward networks, radial basis function networks, design issues of artificial neural networks and recurrent networks	12	CO3

IV	Evolutionary Computation: Soft computing, genetic algorithms, genetic programming concepts, evolutionary programming, swarm intelligence, ant colony paradigm, particle swarm optimization and applications of evolutionary algorithms. Intelligent Agents: Agents vs software programs, classification of agents, working of an agent, single agent and multiagent systems, performance evaluation, architecture,	12	CO4	
----	---	----	-----	--

	agent communication language, applications		
V	Advanced Knowledge Representation Techniques: Conceptual dependency theory, script structures, CYC theory, script structure, CYC theory, case grammars, semantic web. Natural Language Processing: Sentence Analysis phases, grammars and parsers, types of parsers, semantic analysis, universal networking language, dictionary	12	CO5

Books and References:					
Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Artificial Intelligence	Saroj Kaushik	Cengage	1 st	2019
2.	Artificial Intelligence: A	A. Russel, Peter		1 st	
	Modern Approach	Norvig			
3.	Artificial Intelligence	Elaine Rich, Kevin	Tata Mc-	3rd	
		Knight,Shivashankar	Grawhill		
		B. Nair			

M. Sc (Information Technology)		Semester – III	
Course Name: Artificial Intelligence Practical		Course C	ode: PGIT3P2
Periods per week (1 Period is 60 minutes)		4	
Credits		2	
		Hours	Marks
Evaluation System Practical Examination		2	50
	Internal		

10 practicals covering the entire syllabus must be performed. The detailed list of practical will be circulated later in the official workshop.

Course Outcomes:

After completion of course the learner will:

CO1: be able to understand the fundamentals concepts of expert system and its applications.

CO2: be able to use probability and concept of fuzzy sets for solving AI based problems.

CO3: be able to understand the applications of Machine Learning. The learner can also apply fuzzy system for solving problems.

CO4: learner will be able to apply to understand the applications of genetic algorithms in different problems related to artificial intelligence.

CO5: A learner can use knowledge representation techniques in natural language processing.

M. Sc (Information Technology)		Semester – III		
Course Name: Machine Learning		Course C	ode: PGIT303	
Periods per week (1 Period is 60 minutes)		4		
Credits		4		
		Hours	Marks	
Evaluation System Theory Examination		21/2	60	
	Internal		40	

Understanding Human learning aspects.

Understanding primitives in learning process by computer.

Understanding nature of problems solved with Machine Learning

Unit	Details	Lectures	Outcome
I	Introduction: Machine learning, Examples of Machine Learning Problems, Structure of Learning, learning versus Designing, Training versus Testing, Characteristics of Machine learning tasks, Predictive and descriptive tasks, Machine learning Models: Geometric Models, Logical Models, Probabilistic Models. Features: Feature types, Feature Construction and Transformation, Feature Selection.	12	CO1
II	Classification and Regression: Classification: Binary Classification—Assessing Classification performance, Class probability Estimation Assessing class probability Estimates, Multiclass Classification. Regression: Assessing performance of Regression—Error measures, Overfitting—Catalysts for Overfitting, Case study of Polynomial Regression. Theory of Generalization: Effective number of hypothesis, Bounding the Growth function, VC Dimensions, Regularization theory.	12	CO2
III	Linear Models: Least Squares method, Multivariate Linear Regression, Regularized Regression, Using Least Square regression for Classification. Perceptron, Support Vector Machines, Soft Margin SVM, Obtaining probabilities from Linear classifiers, Kernel methods for non-Linearity.	12	CO2 CO3

IV	Logic Based and Algebraic Model: Distance Based Models: Neighbours and Examples, Nearest Neighbours Classification, Distance based clustering-K means Algorithm, Hierarchical clustering, Rule Based Models: Rule learning for subgroup discovery, Association rule mining. Tree Based Models: Decision Trees, Ranking and Probability estimation Trees, Regression trees, Clustering Trees.	12	CO2 CO3 CO4
----	--	----	-------------------

V	Probabilistic Model: Normal Distribution and Its Geometric Interpretations, Naïve Bayes Classifier, Discriminative learning with Maximum likelihood, Probabilistic Models with Hidden variables: Estimation-Maximization Methods, Gaussian Mixtures, and Compression based Models. Trends In Machine Learning: Model and Symbols- Bagging and Boosting, Multitask learning, Online learning and Sequence Prediction, Data Streams and Active Learning, Deep Learning, Reinforcement Learning.	12	CO5
---	--	----	-----

Books a	Books and References:						
Sr. No.	Title	Author/s	Publisher	Edition	Year		
1.	Machine Learning: The Art	Peter Flach	Cambridge		2012		
	and Science of Algorithms		University				
	that Make Sense of Data		Press				
2.	Introduction to Statistical	Hastie, Tibshirani,	Springer	2nd	2012		
	Machine Learning	Friedman					
	with Applications in R						
3.	Introduction to Machine	Ethem Alpaydin	PHI	2nd	2013		
	Learning						

M. Sc (Information Technology)		Semester – III	
Course Name: Machine Learnin	ng Practical	Course Co	ode: PGIT3P3
Periods per week (1 Period is 60	riod is 60 minutes) 4		4
Credits			2
		Hours	Marks
Evaluation System	Practical Examination	2	50
	Internal		-

10 practicals covering the entire syllabus must be performed. The detailed list of practical will be circulated later in the official workshop.

Course Outcomes:

After completion of the course, a student should be able to:

CO1: Understand the key issues in Machine Learning and its associated applications in intelligent business and scientific computing.

CO2: Acquire the knowledge about classification and regression techniques where a learner will be able to explore his skill to generate data base knowledge using the prescribed techniques.

CO3: Understand and implement the techniques for extracting the knowledge using machine learning methods.

CO4: Achieve adequate perspectives of big data analytics in various applications like recommender systems, social media applications etc.

CO5: Understand the statistical approach related to machine learning. He will also Apply the algorithms to a real-world problem, optimize the models learned and report on the expected accuracy that can be achieved by applying the models.

M. Sc (Information Technology)		Semester – III		
Course Name: Robotic Process	Automation	Course Co	ode: PGIT304	
Periods per week (1 Period is 60	minutes)	4		
Credits	Credits 4		4	
		Hours	Marks	
Evaluation System	Theory Examination	$2\frac{1}{2}$ 60		
	Internal		40	

Course Objectives:

To make the students aware about the automation today in the industry.

To make the students aware about the tools used for automation.

To help the students automate a complete process

Unit	Details	Lectures	Outcome
I	Robotic Process Automation: Scope and techniques of automation, About UiPath Record and Play: UiPath stack, Downloading and installing UiPath Studio, Learning UiPath Studio, Task recorder, Step-by-step examples using the recorder.	12	CO1
II	Sequence, Flowchart, and Control Flow: Sequencing the workflow, Activities, Control flow, various types of loops, and decision making, Step-by-step example using Sequence and Flowchart, Step-by-step example using Sequence and Control flow Data Manipulation: Variables and scope, Collections, Arguments – Purpose and use, Data table usage with examples, Clipboard management, File operation with step-by-step example, CSV/Excel to data table and vice versa (with a step-by-step example)	12	CO2
III	Taking Control of the Controls: Finding and attaching windows, Finding the control, Techniques for waiting for a control, Act on controls – mouse and keyboard activities, Working with UiExplorer, Handling events, Revisit recorder, Screen Scraping, When to use OCR, Types of OCR available, How to use OCR, Avoiding typical failure points Tame that Application with Plugins and Extensions: Terminal plugin, SAP automation, Java plugin, Citrix automation, Mail plugin, PDF plugin, Web integration,	12	CO3

	Excel and Word plugins, Credential management, Extensions – Java, Chrome, Firefox, and Silverlight		
IV	Handling User Events and Assistant Bots: What are assistant bots?, Monitoring system event triggers, Hotkey trigger, Mouse trigger, System trigger ,Monitoring image and element triggers, An example of monitoring email, Example of monitoring a copying event and blocking it, Launching an assistant bot on a keyboard event Exception Handling, Debugging, and Logging: Exception handling, Common exceptions and ways to handle them, Logging and taking screenshots, Debugging techniques, Collecting crash dumps, Error reporting	12	CO4
V	Managing and Maintaining the Code: Project organization, Nesting workflows, Reusability of workflows, Commenting techniques, State Machine, When to use Flowcharts, State Machines, or Sequences, Using config files and examples of a config file, Integrating a TFS server Deploying and Maintaining the Bot: Publishing using publish utility, Overview of Orchestration Server, Using Orchestration Server to control bots, Using Orchestration Server to deploy bots, License management, Publishing and managing updates	12	CO5

Books a	Books and References:						
Sr. No.	Title	Author/s	Publisher	Edition	Year		
1.	Learning Robotic Process Automation	Alok Mani Tripathi	Packt	1st	2018		
2.	Robotic Process Automation Tools, Process Automation and their benefits: Understanding RPA and Intelligent Automation	Srikanth Merianda	Createspace Independen t Publishing	1 st	2018		
3.	The Simple Implementation Guide to Robotic Process Automation (Rpa): How to Best Implement Rpa in an Organization	Kelly Wibbenmeyer	iUniverse	1st	2018		

M. Sc (Information Technology)		Semester – III		
Course Name: Robotic Process	S Automation	Course C	ode: pgIT3P4	
Periods per week (1 Period is 6	Periods per week (1 Period is 60 minutes)		4	
Credits			2	
		Hours	Marks	
Evaluation System	Practical Examination	2 50		
	Internal		-	

10 practicals covering the entire syllabus must be performed. The detailed list of practical will be circulated later in the official workshop.

Course Outcomes:

After completing the course, a learner will be able to:

CO1: Understand the mechanism of business process and can provide the solution in an optimize way.

CO2: Understand the features use for interacting with database plugins.

CO3: Use the plug-ins and other controls used for process automation.

CO4: Use and handle the different events, debugging and managing the errors.

CO5: Test and deploy the automated process.

SEMESTER-IV

M. Sc (Information Tech	Semester – IV		
Course Name: Blockchain		Course Co	ode: PGIT401
Periods per week (1 Period is 60 minutes)		4	
Credits			4
		Hours	Marks
Evaluation System	Theory Examination	21/2	60
	Internal		40

To provide conceptual understanding of the function of Blockchain as a method of securing distributed ledgers, how consensus on their contents is achieved, and the new applications that they enable.

To cover the technological underpinnings of blockchain operations as distributed data structures and decision-making systems, their functionality and different architecture types.

To provide a critical evaluation of existing —smart contract capabilities and platforms, and examine their future directions, opportunities, risks and challenges.

Unit	Details	Lectures	Outcome
I	Blockchain: Introduction, History, Centralised versus Decentralised systems, Layers of blockchain, Importance of blockchain, Blockchain uses and use cases. Working of Blockchain: Blockchain foundation, Cryptography, Game Theory, Computer Science Engineering, Properties of blockchain solutions, blockchain transactions, distributed consensus mechanisms, Blockchain mechanisms, Scaling blockchain Working of Bitcoin: Money, Bitcoin, Bitcoin blockchain, bitcoin network, bitcoin scripts, Full Nodes and SVPs, Bitcoin wallets.	12	CO1
II	Ethereum: three parts of blockchain, Ether as currency and commodity, Building trustless systems, Smart contracts, Ethereum Virtual Machine, The Mist	12	CO2

	browser, Wallets as a Computing Metaphor, The Bank Teller Metaphor, Breaking with Banking History, How Encryption Leads to Trust, System Requirements, Using Parity with Geth, Anonymity in Cryptocurrency, Central Bank Network, Virtual Machines, EVM Applications, State Machines, Guts of the EVM, Blocks, Mining's Place in the State Transition Function, Renting Time on the EVM, Gas, Working with Gas, Accounts, Transactions, and Messages, Transactions and Messages, Estimating Gas Fees for Operations, Opcodes in the EVM.		
	Solidity Programming: Introduction, Global Banking Made Real, Complementary Currency, Programming the EVM, Design Rationale, Importance of Formal Proofs, Automated Proofs, Testing, Formatting Solidity Files, Reading Code, Statements and Expressions in Solidity, Value Types, Global Special Variables, Units, and Functions,		
III	Hyperledger: Overview, Fabric, composer, installing hyperledger fabric and composer, deploying, running the network, error troubleshooting. Smart Contracts and Tokens: EVM as Back End, Assets Backed by Anything, Cryptocurrency Is a Measure of Time, Function of Collectibles in Human Systems, Platforms for High-Value Digital Collectibles, Tokens as Category of Smart Contract, Creating a Token, Deploying the Contract, Playing with Contracts.	12	CO3
IV	Mining Ether: Why? Ether's Source, Defining Mining, Difficulty, Self-Regulation, and the Race for Profit, How Proof of Work Helps Regulate Block Time, DAG and Nonce, Faster Blocks, Stale Blocks, Difficulties, Ancestry of Blocks and Transactions, Ethereum and Bitcoin, Forking, Mining, Geth on Windows, Executing Commands in the EVM via the Geth Console, Launching Geth with Flags, Mining on the Testnet, GPU Mining Rigs, Mining on a Pool with Multiple GPUs. Cryptoecnomics: Introduction, Usefulness of cryptoeconomics, Speed of blocks, Ether Issuance scheme, Common Attack Scenarios.	12	CO4

V	Blockchain Application Development: Decentralized Applications, Blockchain Application Development, Interacting with the Bitcoin Blockchain, Interacting Programmatically with Ethereum—Sending Transactions, Creating a Smart Contract, Executing Smart Contract Functions, Public vs. Private Blockchains, Decentralized Application Architecture, Building an Ethereum DApp: The DApp, Setting Up a Private Ethereum Network, Creating the Smart Contract, Deploying the Smart Contract, Client	12	CO5
---	--	----	-----

Application, DApp deployment: Seven Ways to Think	
About Smart Contracts, Dapp Contract Data Models,	
EVM back-end and front-end communication, JSON-	
RPC, Web 3, JavaScript API, Using Meteor with the	
EVM, Executing Contracts in the Console,	
Recommendations for Prototyping, Third-Party	
Deployment Libraries, Creating Private Chains.	

Books a	nd References:				
Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Beginning Blockchain	Bikramadity	Apress		2018
	A Beginner's Guide to	a Singhal,			
	Building	Gautam			
	Blockchain Solutions	Dhameja,			
		Priyansu Sekhar			
		Panda			
2.	Introducing Ethereum and	Chris Dannen	Apress		2017
	Solidity				
3.	The Blockchain	Elad Elrom	Apress		2019
	Developer				
4.	Mastering Ethereum	Andreas M.	O'Reilly	First	2018
		Antonopoulos			
		Dr. Gavin Wood			
5.	Blockchain	Vikram Dhillon	Apress		2017
	Enabled	David Metcalf			
	Applications	Max Hooper			

M. Sc (Information Technology)		Semester – III	
Course Name: Blockchain	Course Code: PGIT4P1		
Periods per week (1 Period is 60 minutes)		4	
Credits		2	
		Hours	Marks
Evaluation System	Practical Examination	2	50
	Internal		-

10 practicals covering the entire syllabus must be performed. The detailed list of practical will be circulated later in the official workshop.

Course Outcomes:

After completion of the course, a student should be able to:

CO1: The students would understand the structure of a blockchain and why/when it is better than a simple distributed database.

CO2: Analyze the incentive structure in a blockchain based system and critically assess its functions, benefits and vulnerabilities

CO3: Evaluate the setting where a blockchain based structure may be applied, its potential and its limitations

CO4: Understand what constitutes a —smart contract, what are its legal implications and what it can and cannot do, now and in the near future

CO5: Develop blockchain DApps.

M. Sc (Information Technology)		Semester – IV		
Course Name: Natural Language Processing		Course Code: PGIT402		
Periods per week (1 Period is 60 minutes)		4		
Credits		4		
		Hours	Marks	
Evaluation System	Theory Examination	21/2	60	
	Internal		40	

The prime objective of this course is to introduce the students to the field of Language Computing and its applications ranging from classical era to modern context.

To provide understanding of various NLP tasks and NLP abstractions such as Morphological analysis, POS tagging, concept of syntactic parsing, semantic analysis etc.

To provide knowledge of different approaches/algorithms for carrying out NLP tasks. To highlight the concepts of Language grammar and grammar representation in Computational Linguistics.

Unit	Details	Lectures	Outcome
I	Introduction to NLP, brief history, NLP applications: Speech to Text(STT), Text to Speech(TTS), Story Understanding, NL Generation, QA system, Machine Translation, Text Summarization, Text classification, Sentiment Analysis, Grammar/Spell Checkers etc., challenges/Open Problems, NLP abstraction levels, Natural Language (NL) Characteristics and NL computing approaches/techniques and steps, NL tasks: Segmentation, Chunking, tagging, NER, Parsing, Word Sense Disambiguation, NL Generation, Web 2.0 Applications: Sentiment Analysis; Text Entailment; Cross Lingual Information Retrieval (CLIR).	12	CO1
II	Text Processing Challenges, Overview of Language Scripts and their representation on Machines using	12	CO2

	Character Sets, Language, Corpus and Application Dependence issues, Segmentation: word level(Tokenization), Sentence level. Regular Expression and Automata Morphology, Types, Survey of English and Indian Languages Morphology, Morphological parsing FSA and FST, Porter stemmer, Rule based and Paradigm based Morphology, Human Morphological Processing, Machine Learning approaches.		
Ш	Word Classes ad Part-of-Speech tagging(POS), survey of POS tagsets, Rule based approaches (ENGTOWL), Stochastic approaches(Probabilistic, N-gram and HMM), TBL morphology, unknown word handling, evaluation metrics: Precision/Recall/F-measure, error analysis.	12	CO3
IV	NL parsing basics, approaches: TopDown, BottomUp, Overview of Grammar Formalisms: constituency and dependency school, Grammar notations CFG, LFG, PCFG, LTAG, Feature- Unification, overview of English CFG, Indian Language Parsing in Paninian Karaka Theory, CFG parsing using Earley's and CYK algorithms, Probabilistic parsing, Dependency Parsing: Covington algorithm, MALT parser, MST parser.	12	CO4
V	Concepts and issues in NL, Theories and approaches for Semantic Analysis, Meaning Representation, word similarity, Lexical Semantics, word senses and relationships, WordNet (English and IndoWordnet), Word Sense Disambiguation: Lesk Algorithm Walker's algorithm, Coreferences Resolution:Anaphora, Cataphora.	12	CO5

Books	and References:				
Sr.	Title	Author/s	Publisher	Edition	Year
No.					
1.	Handbook of Natural Language Processing	Indurkhya, N., & Damerau, F. J.	CRC Press Taylor and Francis Group	2 nd	2010
2.	Speech and Language Processing	Martin, J. H., & Jurafsky, D.	Pearson Education India	2 nd	2013
3.	Foundations of Statistical Natural Language Processing	Manning, Christopher and Heinrich, Schutze	MIT Press	1 st	1997

4.	Natural Language Processing With Python	Steven Bird, Edward Loper	O'Reilly Media	2 nd	2016
5.	Video Links	http://www.npte ge-processing.h	elvideos.in/2012/1 tml	1/natural-	langua

M. Sc (Information Technology)		Semester – IV		
Course Name: Natural Languag	Course C	ode: PGIT4P2		
Periods per week (1 Period is 60 minutes)		4		
Credits		2		
		Hours	Marks	
Evaluation System	Practical Examination	2	50	
	Internal		-	

10 practicals covering the entire syllabus must be performed. The detailed list of practical will be circulated later in the official workshop.

Course Outcomes:

After completion of the course, a student should be able to:

CO1: Students will get idea about know-hows, issues and challenge in Natural Language Processing and NLP applications and their relevance in the classical and modern context.

CO2: Student will get understanding of Computational techniques and approaches for solving NLP problems and develop modules for NLP tasks and tools such as Morph Analyzer, POS tagger, Chunker, Parser, WSD tool etc.

CO3: Students will also be introduced to various grammar formalisms, which they can apply in different fields of study.

CO4: Students can take up project work or work in R&D firms working in NLP and its allied areas.

CO5: Student will be able to understand applications in different sectors

M. Sc (Information Technology)		Semester – IV		
Course Name: Deep Learning		Course Code: PGIT403		
Periods per week (1 Period is 60 minutes) 4		4		
Credits		4		
		Hours	Marks	
Evaluation System Theory Examination		21/2	60	
	Internal		40	

To present the mathematical, statistical and computational challenges of building neural networks

To study the concepts of deep learning

To enable the students to know deep learning techniques to support real-time applications

Unit	Details	Lectures	Outcome
I	Applied Math and Machine Learning Basics: Linear Algebra: Scalars, Vectors, Matrices and Tensors, Multiplying Matrices and Vectors, Identity and Inverse Matrices, Linear Dependence and Span, norms, special matrices and vectors, eigen decompositions. Numerical Computation: Overflow and under flow, poor conditioning, Gradient Based Optimization, Constraint optimization.	12	CO1
II	Deep Networks: Deep feedforward network , regularization for deep learning , Optimization for Training deep models	12	CO2
III	Convolutional Networks, Sequence Modelling, Applications	12	CO3
IV	Deep Learning Research: Linear Factor Models, Autoencoders, representation learning	12	CO4
V	Approximate Inference, Deep Generative Models	12	CO5

Books a	Books and References:						
Sr. No.	Title	Author/s	Publisher	Edition	Year		
1.	Deep Learning	Ian Goodfellow,	An MIT	1st	2016		
		Yoshua Bengio,	Press				
		Aaron Courvile	book				
2.	Fundamentals of Deep	Nikhil Buduma	O'Reilly	1st	2017		
	Learning						
3.	Deep Learning: Methods	Deng & Yu	Now	1st	2013		
	and Applications		Publishers				
4.	Deep Learning CookBook	Douwe Osinga	O'Reilly	1st	2017		

M. Sc (Information Tec	Semester – IV			
Course Name: Deep Learning I	Practical	Course Code: PGIT4P3		
Periods per week (1 Period is 60 minutes)		4		
Credits		2		
		Hours	Marks	
Evaluation System	Practical Examination	2	50	
	Internal		-	

10 practicals covering the entire syllabus must be performed. The detailed list of practical will be circulated later in the official workshop.

Course Outcomes:

After completion of the course, a student should be able to:

CO1: Describes basics of mathematical foundation that will help the learner to understand the concepts of Deep Learning.

CO2: Understand and describe model of deep learning

CO3: Design and implement various deep supervised learning architectures for text & image data

CO4: Design and implement various deep learning models and architectures.

CO5: Apply various deep learning techniques to design efficient algorithms for real-world applications.

M. Sc (Information Technology) Semester –			er – IV
Course Name: Human Comput	er Interaction	Course C	ode: PGIT404
Periods per week (1 Period is 60) minutes)	4	
Credits	4		
		Hours	Marks
Evaluation System	Theory Examination	21/2	60
	Internal		40

Understand the important aspects of implementation of human-computer interfaces. Identify the various tools and techniques for interface analysis, design, and evaluation. Identify the impact of usable interfaces in the acceptance and performance utilization of information systems

Unit	Details	Lectures	Outcome
I	The Interaction: Models of interaction, Design Focus, Frameworks and HCI, Ergonomics, Interaction styles, Elements of the WIMP interface, Interactivity Paradigms: Introduction, Paradigms for interaction Interaction design basics: What is design?, The process of design, User focus, Cultural probes, Navigation design, the big button trap, Modes, Screen design and layout, Alignment and layout matters, Checking screen colors, Iteration and prototyping HCI in the software process: The software life cycle, Usability engineering, Iterative design and prototyping, Prototyping in practice, Design rationale	12	CO1
II	Design : Principles to support usability, Standards, Guidelines, Golden rules and heuristics, HCI patterns	12	CO2

	Implementation support: Elements of windowing systems, Programming the application, Going with the grain, Using toolkits, User interface management systems Evaluation techniques: What is evaluation?, Goals of evaluation, Evaluation through expert analysis, Evaluation through user participation, Choosing an evaluation method		
III	Universal design: Universal design principles, Multimodal interaction, Designing websites for screen readers, Choosing the right kind of speech, Designing for diversity User support: Requirements of user support, Approaches to user support, Adaptive help systems, Designing user support systems Cognitive models: Goal and task hierarchies, Linguistic models, The challenge of display-based systems, Physical and device models, Cognitive architectures	12	CO3
IV	Socio-organizational issues and stakeholder requirements: Organizational issues, Capturing requirements Communication and collaboration models: Face-to-face communication, Conversation, Text-based communication, Group working Task analysis: Differences between task analysis and other techniques, Task decomposition, Knowledge-based analysis, Entity—relationship-based techniques, Sources of information and data collection, Uses of task analysis	12	CO4
V	Dialog notations and design: What is dialog?, Dialog design notations, Diagrammatic notations, Textual dialog notations, Dialog semantics, Dialog analysis and design Models of the system: Standard formalisms, Interaction models, Continuous behavior Modeling rich interaction: Status—event analysis, Rich contexts, Low intention and sensor-based interaction	12	CO5

Books a	nd References:				
Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Human Computer Interaction	Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale	Pearson Education	3rd	
2.	Designing the User Interface	Shneiderman B., Plaisant C., Cohen	Pearson	5th	2013

	N T 1 C		
1	M Jacobs S J		
1	111., 340005 5.		

Course Outcomes:

After completion of the course, a student should be able to:

CO1: have a clear understanding of HCI principles that influence a system's interface design, before writing any code.

CO2: understand the evaluation techniques used for any of the proposed system.

CO3: understand the cognitive models and its design.

CO4: able to understand how to manage the system resources and do the task analysis.

CO5: able to design and implement a complete system.